Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38540351

ABSTRACT

Rare diseases, or orphan diseases, are defined as diseases affecting a small number of people compared to the general population. Among these, we find lysosomal storage disorders (LSDs), a cluster of rare metabolic diseases characterized by enzyme mutations causing abnormal glycolipid storage. Drug repositioning involves repurposing existing approved drugs for new therapeutic applications, offering advantages in cost, time savings, and a lower risk of failure. We present a comprehensive analysis of existing drugs, their repurposing potential, and their clinical implications in the context of LSDs, highlighting the necessity of mutation-specific approaches. Our review systematically explores the landscape of drug repositioning as a means to enhance LSDs therapies. The findings advocate for the strategic repositioning of drugs, accentuating its role in expediting the discovery of effective treatments. We conclude that drug repurposing represents a viable pathway for accelerating therapeutic discovery for LSDs, emphasizing the need for the careful evaluation of drug efficacy and toxicity in disease-specific contexts.


Subject(s)
Drug Repositioning , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/drug therapy , Lysosomal Storage Diseases/genetics , Mutation , Lysosomes/metabolism
2.
Genes Dev ; 38(3-4): 131-150, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38453481

ABSTRACT

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Subject(s)
Oocytes , Zygote , Animals , Child , Female , Humans , Mice , CCAAT-Enhancer-Binding Proteins/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Methylation/genetics , Embryonic Development/genetics , Genomic Imprinting/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Biochimie ; 222: 123-131, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38458414

ABSTRACT

PMM2-CDG, a disease caused by mutations in phosphomannomutase-2, is the most common congenital disorder of glycosylation. Yet, it still lacks a cure. Targeting phosphomannomutase-2 with pharmacological chaperones or inhibiting the phosphatase activity of phosphomannomutase-1 to enhance intracellular glucose-1,6-bisphosphate have been proposed as therapeutical approaches. We used Recombinant Bacterial Thermal Shift Assay to assess the binding of a substrate analog to phosphomannomutase-2 and the specific binding to phosphomannomutase-1 of an FDA-approved drug - clodronate. We also deepened the clodronate binding by enzyme activity assays and in silico docking. Our results confirmed the selective binding of clodronate to phosphomannomutase-1 and shed light on such binding.

4.
Essays Biochem ; 67(4): 653-670, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37503682

ABSTRACT

Life sustains itself using energy generated by thermodynamic disequilibria, commonly existing as redox disequilibria. Metals are significant players in controlling redox reactions, as they are essential components of the engine that life uses to tap into the thermodynamic disequilibria necessary for metabolism. The number of proteins that evolved to catalyze redox reactions is extraordinary, as is the diversification level of metal cofactors and catalytic domain structures involved. Notwithstanding the importance of the topic, the relationship between metals and the redox reactions they are involved in has been poorly explored. This work reviews the structure and function of different prokaryotic organometallic-protein complexes, highlighting their pivotal role in controlling biogeochemistry. We focus on a specific subset of metal-containing oxidoreductases (EC1 or EC7.1), which are directly involved in biogeochemical cycles, i.e., at least one substrate or product is a small inorganic molecule that is or can be exchanged with the environment. Based on these inclusion criteria, we select and report 59 metalloenzymes, describing the organometallic structure of their active sites, the redox reactions in which they are involved, and their biogeochemical roles.


Subject(s)
Metalloproteins , Oxidoreductases , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Metals/chemistry , Metals/metabolism , Oxidation-Reduction , Metalloproteins/chemistry , Metalloproteins/metabolism , Catalytic Domain
5.
Insects ; 14(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37504611

ABSTRACT

In the model system for genetics, Drosophila melanogaster, sexual differentiation and male courtship behavior are controlled by sex-specific splicing of doublesex (dsx) and fruitless (fru). In vitro and in vivo studies showed that female-specific Transformer (TRA) and the non-sex-specific Transformer 2 (TRA2) splicing factors interact, forming a complex promoting dsx and fru female-specific splicing. TRA/TRA2 complex binds to 13 nt long sequence repeats in their pre-mRNAs. In the Mediterranean fruitfly Ceratitis capitata (Medfly), a major agricultural pest, which shares with Drosophila a ~120 million years old ancestor, Cctra and Cctra2 genes seem to promote female-specific splicing of Ccdsx and Ccfru, which contain conserved TRA/TRA2 binding repeats. Unlike Drosophila tra, Cctra autoregulates its female-specific splicing through these putative regulatory repeats. Here, a yeast two-hybrid assay shows that CcTRA interacts with CcTRA2, despite its high amino acid divergence compared to Drosophila TRA. Interestingly, CcTRA2 interacts with itself, as also observed for Drosophila TRA2. We also generated a three-dimensional model of the complex formed by CcTRA and CcTRA2 using predictive approaches based on Artificial Intelligence. This structure also identified an evolutionary and highly conserved putative TRA2 recognition motif in the TRA sequence. The Y2H approach, combined with powerful predictive tools of three-dimensional protein structures, could use helpful also in this and other insect species to understand the potential links between different upstream proteins acting as primary sex-determining signals and the conserved TRA and TRA2 transducers.

6.
Cancers (Basel) ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37046605

ABSTRACT

CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.

7.
Int J Mol Sci ; 24(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36901983

ABSTRACT

Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.


Subject(s)
Fabry Disease , Humans , Fabry Disease/metabolism , alpha-Galactosidase/metabolism , Enzyme Replacement Therapy/methods , Isoenzymes/therapeutic use , Recombinant Proteins/therapeutic use
8.
Microorganisms ; 11(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985273

ABSTRACT

In a previous study, a linezolid analogue, called 10f, was synthesized. The 10f molecule has an antimicrobial activity comparable to that of the parental compound. In this study, we isolated a Staphylococcus aureus (S. aureus) strain resistant to 10f. After sequencing the 23S rRNA and the ribosomal proteins L3 (rplC) and L4 (rplD) genes, we found that the resistant phenotype was associated with a single mutation G359U in rplC bearing to the missense mutation G120V in the L3 protein. The identified mutation is far from the peptidyl transferase center, the oxazolidinone antibiotics binding site, thus suggesting that we identified a new and interesting example of a long-range effect in the ribosome structure.

9.
Elife ; 122023 03 10.
Article in English | MEDLINE | ID: mdl-36897801

ABSTRACT

Precise organization of growing structures is a fundamental process in developmental biology. In plants, radial growth is mediated by the cambium, a stem cell niche continuously producing wood (xylem) and bast (phloem) in a strictly bidirectional manner. While this process contributes large parts to terrestrial biomass, cambium dynamics eludes direct experimental access due to obstacles in live-cell imaging. Here, we present a cell-based computational model visualizing cambium activity and integrating the function of central cambium regulators. Performing iterative comparisons of plant and model anatomies, we conclude that the receptor-like kinase PXY and its ligand CLE41 are part of a minimal framework sufficient for instructing tissue organization. By integrating tissue-specific cell wall stiffness values, we moreover probe the influence of physical constraints on tissue geometry. Our model highlights the role of intercellular communication within the cambium and shows that a limited number of factors are sufficient to create radial growth by bidirectional tissue production.


Subject(s)
Cambium , Plant Development , Plants , Xylem , Computer Simulation , Gene Expression Regulation, Plant , Phloem
10.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674610

ABSTRACT

Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.


Subject(s)
Curcumin , Fabry Disease , Humans , Fabry Disease/drug therapy , Fabry Disease/genetics , alpha-Galactosidase/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/metabolism , Galactose/metabolism , Mutation , Lysosomes/metabolism , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use
11.
Epigenetics Chromatin ; 15(1): 27, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918739

ABSTRACT

BACKGROUND: Imprinting Control Regions (ICRs) are CpG-rich sequences acquiring differential methylation in the female and male germline and maintaining it in a parental origin-specific manner in somatic cells. Despite their expected high mutation rate due to spontaneous deamination of methylated cytosines, ICRs show conservation of CpG-richness and CpG-containing transcription factor binding sites in mammalian species. However, little is known about the mechanisms contributing to the maintenance of a high density of methyl CpGs at these loci. RESULTS: To gain functional insights into the mechanisms for maintaining CpG methylation, we sought to identify the proteins binding the methylated allele of the ICRs by determining the interactors of ZFP57 that recognizes a methylated hexanucleotide motif of these DNA regions in mouse ESCs. By using a tagged approach coupled to LC-MS/MS analysis, we identified several proteins, including factors involved in mRNA processing/splicing, chromosome organization, transcription and DNA repair processes. The presence of the post-replicative mismatch-repair (MMR) complex components MSH2 and MSH6 among the identified ZFP57 interactors prompted us to investigate their DNA binding profile by chromatin immunoprecipitation and sequencing. We demonstrated that MSH2 was enriched at gene promoters overlapping unmethylated CpG islands and at repeats. We also found that both MSH2 and MSH6 interacted with the methylated allele of the ICRs, where their binding to DNA was mediated by the ZFP57/KAP1 complex. CONCLUSIONS: Our findings show that the MMR complex is concentrated on gene promoters and repeats in mouse ESCs, suggesting that maintaining the integrity of these regions is a primary function of highly proliferating cells. Furthermore, the demonstration that MSH2/MSH6 are recruited to the methylated allele of the ICRs through interaction with ZFP57/KAP1 suggests a role of the MMR complex in the maintenance of the integrity of these regulatory regions and evolution of genomic imprinting in mammalian species.


Subject(s)
DNA Methylation , Repressor Proteins , Animals , Chromatography, Liquid , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genomic Imprinting , Mammals/metabolism , Mice , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Repressor Proteins/metabolism , Tandem Mass Spectrometry
12.
Clin Epigenetics ; 14(1): 71, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35643636

ABSTRACT

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS: We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION: Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.


Subject(s)
Beckwith-Wiedemann Syndrome , Pseudohypoparathyroidism , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation , Genomic Imprinting , Humans , Proteins/genetics , Pseudohypoparathyroidism/genetics , Pseudohypoparathyroidism
13.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563496

ABSTRACT

Fabry disease is caused by a deficiency of lysosomal alpha galactosidase and has a very large genotypic and phenotypic spectrum. Some patients who carry hypomorphic mutations can benefit from oral therapy with a pharmacological chaperone. The drug requires a very precise regimen because it is a reversible inhibitor of alpha-galactosidase. We looked for molecules that can potentiate this pharmacological chaperone, among drugs that have already been approved for other diseases. We tested candidate molecules in fibroblasts derived from a patient carrying a large deletion in the gene GLA, which were stably transfected with a plasmid expressing hypomorphic mutants. In our cell model, three drugs were able to potentiate the action of the pharmacological chaperone. We focused our attention on one of them, acetylsalicylic acid. We expect that acetylsalicylic acid can be used in synergy with the Fabry disease pharmacological chaperone and prolong its stabilizing effect on alpha-galactosidase.


Subject(s)
Fabry Disease , alpha-Galactosidase , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Aspirin/pharmacology , Aspirin/therapeutic use , Drug Repositioning , Fabry Disease/drug therapy , Fabry Disease/genetics , Humans , Lysosomes , Molecular Chaperones/genetics , Mutation , alpha-Galactosidase/genetics , alpha-Galactosidase/therapeutic use
14.
Genes (Basel) ; 12(4)2021 04 19.
Article in English | MEDLINE | ID: mdl-33921689

ABSTRACT

The protease encoded by the TMPRSS2 gene facilitates viral infections and has been implicated in the pathogenesis of SARS-CoV-2. We analyzed the TMPRSS2 sequence and correlated the protein variants with the clinical features of a cohort of 1177 patients affected by COVID-19 in Italy. Nine relatively common variants (allele frequency > 0.01) and six missense variants which may affect the protease activity according to PolyPhen-2 in HumVar-trained mode were identified. Among them, p.V197M (p.Val197Met) (rs12329760) emerges as a common variant that has a deleterious effect on the protease and a protective effect on the patients. Its role appears particularly relevant in two subgroups of patients-young males and elderly women-and among those affected by co-morbidities, where the variant frequency is higher among individuals who were mildly affected by the disease and did not need hospitalization or oxygen therapy than among those more severely affected, who required oxygen therapy, ventilation or intubation. This study provides useful information for the identification of patients at risk of developing a severe form of COVID-19, and encourages the usage of drugs affecting the expression of TMPRSS2 or inhibiting protein activity.


Subject(s)
COVID-19/etiology , Polymorphism, Single Nucleotide , Serine Endopeptidases/genetics , Aged , COVID-19/epidemiology , COVID-19/genetics , COVID-19/therapy , Comorbidity , Female , Gene Frequency , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Mutation , Respiration, Artificial , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Treatment Outcome
15.
BMC Bioinformatics ; 21(Suppl 10): 348, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32838733

ABSTRACT

BACKGROUND: Bioinformatics has pervaded all fields of biology and has become an indispensable tool for almost all research projects. Although teaching bioinformatics has been incorporated in all traditional life science curricula, practical hands-on experiences in tight combination with wet-lab experiments are needed to motivate students. RESULTS: We present a tutorial that starts from a practical problem: finding novel enzymes from marine environments. First, we introduce the idea of metagenomics, a recent approach that extends biotechnology to non-culturable microbes. We presuppose that a probe for the screening of metagenomic cosmid library is needed. The students start from the chemical structure of the substrate that should be acted on by the novel enzyme and end with the sequence of the probe. To attain their goal, they discover databases such as BRENDA and programs such as BLAST and Clustal Omega. Students' answers to a satisfaction questionnaire show that a multistep tutorial integrated into a research wet-lab project is preferable to conventional lectures illustrating bioinformatics tools. CONCLUSION: Experimental biologists can better operate basic bioinformatics if a problem-solving approach is chosen.


Subject(s)
Biotechnology/education , Computational Biology/education , Marine Biology/education , Metagenomics , Amino Acid Sequence , Bacterial Proteins/chemistry , Base Sequence , Databases, Factual , Databases, Protein , Goals , Humans , Learning , User-Computer Interface
16.
Mar Environ Res ; 158: 104953, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32217299

ABSTRACT

Pollutants alter marine systems, interfering with provisioning of ecosystem services; understanding their interaction with ecological communities is therefore critical to inform environmental management. Here we propose a joint compositional- and interaction-based analysis for ecological status assessment and apply it on the benthic communities of the Bagnoli Bay. We found that contamination differentially affects the communities' composition in the bay, with prokaryotes influenced only by depth, and benthos not following the environmental gradient at all. This result is confirmed by analyses of the community structure, whose network structure suggest fast carbon flow and cycling, especially promoted by nematodes and polychaetes; the benthic prey/predator biomass ratio, adjusted for competition, successfully synthesise the status of predator taxa. We found demersal fish communities to separate into a deep, pelagic-like community, and two shallow communities where a shift from exclusive predators to omnivores occurs, moving from the most polluted to the least polluted sampling units. Finally, our study indicate that indices based on interspecific interactions are better indicators of environmental gradients than those defined based on species composition exclusively.


Subject(s)
Ecosystem , Environmental Pollutants , Animals , Bays , Environmental Monitoring , Fishes
17.
Int J Mol Sci ; 21(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31940970

ABSTRACT

The term "pharmacological chaperone" was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.


Subject(s)
Fabry Disease , Molecular Chaperones/therapeutic use , Mutation, Missense , alpha-Galactosidase , Fabry Disease/drug therapy , Fabry Disease/enzymology , Fabry Disease/genetics , Humans , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
18.
Ecol Evol ; 9(20): 11631-11646, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31695874

ABSTRACT

Species are characterized by physiological and behavioral plasticity, which is part of their response to environmental shifts. Nonetheless, the collective response of ecological communities to environmental shifts cannot be predicted from the simple sum of individual species responses, since co-existing species are deeply entangled in interaction networks, such as food webs. For these reasons, the relation between environmental forcing and the structure of food webs is an open problem in ecology. To this respect, one of the main problems in community ecology is defining the role each species plays in shaping community structure, such as by promoting the subdivision of food webs in modules-that is, aggregates composed of species that more frequently interact-which are reported as community stabilizers. In this study, we investigated the relationship between species roles and network modularity under environmental shifts in a highly resolved food web, that is, a "weighted" ecological network reproducing carbon flows among marine planktonic species. Measuring network properties and estimating weighted modularity, we show that species have distinct roles, which differentially affect modularity and mediate structural modifications, such as modules reconfiguration, induced by environmental shifts. Specifically, short-term environmental changes impact the abundance of planktonic primary producers; this affects their consumers' behavior and cascades into the overall rearrangement of trophic links. Food web re-adjustments are both direct, through the rewiring of trophic-interaction networks, and indirect, with the reconfiguration of trophic cascades. Through such "systemic behavior," that is, the way the food web acts as a whole, defined by the interactions among its parts, the planktonic food web undergoes a substantial rewiring while keeping almost the same global flow to upper trophic levels, and energetic hierarchy is maintained despite environmental shifts. This behavior suggests the potentially high resilience of plankton networks, such as food webs, to dramatic environmental changes, such as those provoked by global change.

19.
BMC Bioinformatics ; 19(Suppl 15): 433, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30497360

ABSTRACT

BACKGROUND: Severity gradation of missense mutations is a big challenge for exome annotation. Predictors of deleteriousness that are most frequently used to filter variants found by next generation sequencing, produce qualitative predictions, but also numerical scores. It has never been tested if these scores correlate with disease severity. RESULTS: wANNOVAR, a popular tool that can generate several different types of deleteriousness-prediction scores, was tested on Fabry disease. This pathology, which is caused by a deficit of lysosomal alpha-galactosidase, has a very large genotypic and phenotypic spectrum and offers the possibility of associating a quantitative measure of the damage caused by mutations to the functioning of the enzyme in the cells. Some predictors, and in particular VEST3 and PolyPhen2 provide scores that correlate with the severity of lysosomal alpha-galactosidase mutations in a statistically significant way. CONCLUSIONS: Sorting disease mutations by severity is possible and offers advantages over binary classification. Dataset for testing and training in silico predictors can be obtained by transient transfection and evaluation of residual activity of mutants in cell extracts. This approach consents to quantitative data for severe, mild and non pathological variants.


Subject(s)
Lysosomes/enzymology , Molecular Sequence Annotation/methods , Mutation, Missense/genetics , alpha-Galactosidase/genetics , Fabry Disease/enzymology , Fabry Disease/genetics , Humans , Phenotype
20.
Int J Mol Sci ; 19(8)2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30061496

ABSTRACT

Type I disorders of glycosylation (CDG), the most frequent of which is phosphomannomutase 2 (PMM2-CDG), are a group of diseases causing the incomplete N-glycosylation of proteins. PMM2-CDG is an autosomal recessive disease with a large phenotypic spectrum, and is associated with mutations in the PMM2 gene. The biochemical analysis of mutants does not allow a precise genotype⁻phenotype correlation for PMM2-CDG. PMM2 is very tolerant to missense and loss of function mutations, suggesting that a partial deficiency of activity might be beneficial under certain circumstances. The patient phenotype might be influenced by variants in other genes associated with the type I disorders of glycosylation in the general population.


Subject(s)
Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Mutation , Phosphotransferases (Phosphomutases)/genetics , Genetic Association Studies , Glycosylation , Humans , Models, Molecular , Mutation, Missense , Phenotype , Phosphotransferases (Phosphomutases)/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...